Intratumoral Heterogeneity in EGFR-Mutant NSCLC Results in Divergent Resistance Mechanisms in Response to EGFR Tyrosine Kinase Inhibition.

نویسندگان

  • Margaret Soucheray
  • Marzia Capelletti
  • Inés Pulido
  • Yanan Kuang
  • Cloud P Paweletz
  • Jeffrey H Becker
  • Eiki Kikuchi
  • Chunxiao Xu
  • Tarun B Patel
  • Fatima Al-Shahrour
  • Julián Carretero
  • Kwok-Kin Wong
  • Pasi A Jänne
  • Geoffrey I Shapiro
  • Takeshi Shimamura
چکیده

Non-small cell lung cancers (NSCLC) that have developed resistance to EGF receptor (EGFR) tyrosine kinase inhibitor (TKI), including gefitinib and erlotinib, are clinically linked to an epithelial-to-mesenchymal transition (EMT) phenotype. Here, we examined whether modulating EMT maintains the responsiveness of EGFR-mutated NSCLCs to EGFR TKI therapy. Using human NSCLC cell lines harboring mutated EGFR and a transgenic mouse model of lung cancer driven by mutant EGFR (EGFR-Del19-T790M), we demonstrate that EGFR inhibition induces TGFβ secretion followed by SMAD pathway activation, an event that promotes EMT. Chronic exposure of EGFR-mutated NSCLC cells to TGFβ was sufficient to induce EMT and resistance to EGFR TKI treatment. Furthermore, NSCLC HCC4006 cells with acquired resistance to gefitinib were characterized by a mesenchymal phenotype and displayed a higher prevalence of the EGFR T790M mutated allele. Notably, combined inhibition of EGFR and the TGFβ receptor in HCC4006 cells prevented EMT but was not sufficient to prevent acquired gefitinib resistance because of an increased emergence of the EGFR T790M allele compared with cells treated with gefitinib alone. Conversely, another independent NSCLC cell line, PC9, reproducibly developed EGFR T790M mutations as the primary mechanism underlying EGFR TKI resistance, even though the prevalence of the mutant allele was lower than that in HCC4006 cells. Thus, our findings underscore heterogeneity within NSCLC cells lines harboring EGFR kinase domain mutations that give rise to divergent resistance mechanisms in response to treatment and anticipate the complexity of EMT suppression as a therapeutic strategy.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mimicking the BIM BH3 domain overcomes resistance to EGFR tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) are widely applied to treat EGFR-mutant non-small cell lung cancer (NSCLC). BIM is a BH3 domain-containing protein encoded by BCL2L11. Some EGFR-mutant NSCLC patients showing BIM deletion polymorphism are resistant to EGFR TKIs. We retrospectively investigated BIM deletion polymorphism in NSCLC patients, its correlation wit...

متن کامل

Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line

Tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (EGFR) are now standard treatment in the clinic for patients with advanced EGFR mutant non-small-cell lung cancer (NSCLC). First-generation EGFR TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR tyrosine kinase domain, have resulted in a significant improvement in outcome for NSCLC ...

متن کامل

Acquisition of EGFR TKI resistance and EMT phenotype is linked with activation of IGF1R/NF-κB pathway in EGFR-mutant NSCLC

Epithelial-mesenchymal transition (EMT) is clinically associated with acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) in non-small cell lung cancers (NSCLC). However, the mechanisms promoting EMT in EGFR TKI-resistant NSCLC have not been fully elucidated. Previous studies have suggested that IGF1R signaling is involved in both acquired EGFR TKI re...

متن کامل

Treatment of Non-small Cell Lung Carcinoma after Failure of Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor

Since the first description of non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation as a distinct clinical entity, studies have proved EGFR tyrosine kinase inhibitors (TKIs) as a first choice of treatment. The median response duration of TKIs as a first-line treatment for EGFR mutant tumors ranges from 11 to 14 months. However, acquired resistance ...

متن کامل

Polo-like kinase 1 inhibition diminishes acquired resistance to epidermal growth factor receptor inhibition in non-small cell lung cancer with T790M mutations

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are effective against non-small cell lung cancer (NSCLC) with activating EGFR mutations, but resistance is inevitable. Mechanisms of acquired resistance include T790M mutations and epithelial-mesenchymal transition (EMT). One potential strategy for overcoming this resistance is the inhibition of polo-like kinase 1 (PLK1) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 75 20  شماره 

صفحات  -

تاریخ انتشار 2015